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Summary
This year we took part in the genomic information

retrieval and information extraction tasks, as well as the
named page and topic distillation searches.  In carrying
out the last two tasks, we made use of link anchor
information and document content in order to construct
Web page representatives.  This type of document
representation uses multi-vectors to highlight the
importance of both hyperlink and document content.  

Introduction
As a part of the TREC-2003 evaluation campaign,

the UniNE group is taking part in the genomics and
Web tracks.  The first section of this paper describes the
IR models we used in the genomics information
retrieval.  Section 2 describes our various approaches to
automatically extracting gene descriptions from a given
scientific paper, using only its title and its abstract.
Section 3 describes our procedures for indexing and
retrieving Web pages, based on three document
representations, and our distributed indexing framework
based on the Okapi probabilistic model. Section 4
explains the IR approach we used to combine both Web
page content and anchor information when searching for
specific named pages and homepages.  Finally, Section
5 describes how our IR scheme can be used within the
context of topic distillation tasks.

In order to evaluate our hypothesis, we used the
SMART system as a testbed, implementing various
vector-space IR schemes and probabilistic models.
This year our experiments were conducted on an Intel
Pentium III/600 (memory: 1 GB, swap: 2 GB, disk: 6
x 35 GB) and all experiments were fully automated.

1.  Genomics Information Retrieval
In carrying out our genomic ad hoc search task, we

worked with a Medline collection subset containing
525,938 documents, or more precisely, bibliographic
records mainly containing an article title, an abstract
and some manually assigned descriptors.  The available
queries consisted of a gene name (or more precisely, its
official name and symbol, together with various alias,
associated products and proteins).  

This information retrieval task is comparable to the
Amaryllis corpus composed of 148,688 scientific

bibliographic records written in French.  Each of the
Amaryllis collection records mainly consisted of an
article title, an abstract and some manually assigned
descriptors.  This collection was included in the CLEF-
2002 evaluation campaign (Savoy, 2003).  

The indexing procedure we used in both genomic
tracks is described in Section 1.1, while Section 1.2
provides an overall description of various IR models.
Section 1.3 describes the pseudo-relevance feedback (or
blind query expansion) used in our experiments.
Section 1.4 shows how we combine the various result
lists generated, using different indexing and searching
schemes in order to process the same document
collection (data fusion).  The last section evaluates the
retrieval effectiveness achieved by diverse IR models
and also that of various combined approaches.

1.1. Indexing Procedure

We chose the SMART system as effective means of
searching the Medline collection subset.  From the
original documents and during the indexing process, we
retained only the following logical sections: TI (title),
TT (transliterated title from non-Roman alphabet
language), AB (abstract), MH (MeSH terms based on
the NLM's controlled vocabulary), GS (Gene symbol or
abbreviated gene names), and RN (EC/RN numbers are
assigned by the Enzyme Commission to designate a
particular enzyme).  

Only the available descriptions were used to
formulate the queries.  The “official symbol” field was
repeated three times however in order to assign more
importance to this particular field.  

To form an indexing word, our system takes letter
and digit sequences into account, or when preceded and
followed by a letter, the following character is used:
'.@!_ (the default SMART system list).  Thus the
strings "IBM360", "U.S", or "sym_name" are viewed
as single indexing terms.  To this set, we might add /
and – characters (a set labeled as “Separator+”) in order
to view the sequence "DEAD/H" as one indexing term.

Moreover, a stemming procedure was often used in
order to reduce to the same root (or stem) inflectional
and derivational variants of words.  For example, the
words "thinking", "thinkers" or "thinks" would be
reduced to the stem "think".  To achieve this, we
employed the Lovins' stemmer (Lovins, 1968) based on



a list of over 260 suffixes (the default stemming
approach in SMART).  On the other hand, we
sometimes preferred using a light stemming approach,
wherein only the plural form of English words were
removed.  To evaluate this stemming approach, we
adopted the "S stemmer" (Harman, 1991) based on the
following rules:

1. If a word ends in «-ies», but not «-eies» or «-aies»
then replace «-ies» by «-y»;

2. If a word ends in «-es», but not «-aes», «-ees» or
«-oes» then replace «-es» by «-e»;

3. If a word ends in «-s», but not «-us» or «-ss» then
remove the «-s».

1.2. Search Models

In order to define a retrieval model, we must specify
how the documents and the requests are to be represented
(indexing procedure) and how the similarity between
document and query surrogates are to be computed.  To
achieve this and in order to obtain a broader view of the
relative merit of various retrieval models, we evaluated
the genomic corpus using 11 search models.  

As a first approach, we adopted a binary indexing
scheme within which each document (or request) was
represented by a set of keywords, without any weight.
To measure similarity between documents and requests,
we counted the number of common terms, computed
according to the inner product (retrieval model denoted
"doc=bnn, query=bnn" or "bnn-bnn").  For document
and query indexing however binary logical restrictions
are often too limiting.  In order to weight the presence
of each indexing term in a document surrogate (or in a
query), we sometimes took account of the term
occurrence frequency, thus allowing for better term
distinction and increasing indexing flexibility (model
denoted "doc=nnn, query=nnn" or "nnn-nnn").

Those terms however that did occur very frequently
in the collection were very helpful in distinguishing
between relevant and non-relevant items.  Thus we
could count their frequency in the collection, or more
precisely the inverse document frequency (denoted by
idfj), resulting in more weight for sparse words and less
weight for more frequent ones.  This idf value is usually
computed as ln(n/dfj) where n indicates the number of
documents in the collection.  Moreover, a cosine
normalization could prove beneficial and each indexing
weight could vary within the range of 0 to 1 (retrieval
model notation: "ntc-ntc").  Table A.1 in the Appendix
depicts the exact weighting formulation.

Other variants were also created, especially when
considering the occurrence of a given term in a
document as a rare event.  Thus, it could be good
practice to assign more importance to the first

occurrence of this word as compared to any successive
or repeating occurrences.  Therefore, the tf component
could be computed as 0.5 + 0.5!·![tf!/!max!tf in a
document] (retrieval model denoted "doc=atn").
Moreover, we should consider that a term's presence in a
shorter document provides stronger evidence than it does
in a longer document.  To account for this, we
integrated document length within the weighting
formula, leading to more complex IR models; for
example, the IR model denoted by "doc=Lnu" (Buckley
et al., 1996), "doc=dtu" (Singhal et al., 1999).

In addition to previous models based on the vector-
space approach, we also considered probabilistic models,
an example being the Okapi probabilistic model
(Robertson et al., 2000).  As a second probabilistic
approach, we implemented the Prosit (PRObabilistic
Sift of Information Terms) approach (Amati & van
Rijsbergen, 2002; Amati et al., 2003), based on the
following indexing formula:

wij = Inf1ij · Inf2ij  =  (1 - Prob1
ij) · Inf2ij    with

Prob1
ij = tfnij / (tfnij + 1)

tfnij = tfi j · log2[1 + ((C · mean dl) / lj)]

Inf2ij  =  -log2[1 / (1+lj)] - tfni j · log2[lj / (1+lj)]
with lj = tcj / n

in which wij reflects the importance of each single-term
tj in a document Di, tfj the frequency of occurrence of
term tj in a document Di, tcj indicates the number of
occurrences of term tj in the collection, n the number of
documents, and C and mean dl are constants.  In this
model, the query terms are weighted according to a
term occurrence frequency (denoted "nnn").

1.3. Pseudo-Relevance Feedback

It was observed that pseudo-relevance feedback (or
blind-query expansion) seemed to be a useful technique
for enhancing retrieval effectiveness. In our evaluations,
we adopted Rocchio's approach (Rocchio, 1971),
(Buckley et al., 1996) in which the newly expanded
query Q' was composed as follows:

Q'  =  a . Q + b . 

† 

1
r

 ⋅ wij
j=1

r
Â

within which Q denoted the previous request, a= 0.75,
b = 0.75 and the system was allowed to add s terms
extracted from the original query’s r best ranked
documents.

1.4. Data Fusion

Until now, we used a single search model (or
engine) when searching document collections.  We
might however suggest sending the request to various   



Mean average precision
Lovins’ stemmer S stemmer

IR model Default list Separator+ Default list Separator+
Okapi-npn 15.10 15.39 15.53 15.41
OkaR-npn 14.74 15.13 15.39 15.45
Prosit 15.07 14.60 15.31 14.91
dtu-dtn 16.80 17.44 18.25 18.67
atn-ntc 16.47 16.30 16.71 16.86
Lnu-ltc 16.19 16.28 16.62 16.41
ltn-ntc 16.32 16.39 16.24 16.00
ltc-ltc 15.64 15.95 16.62 16.43
lnc-ltc 14.86 14.00 16.00 14.64
ntc-ntc 14.48 12.78 15.04 13.30
bnn-bnn 7.02 7.48 7.31 8.54
nnn-nnn 3.90 3.54 3.48 3.84

Table 3.  Mean average precision for various IR models using the Genomics corpus (50 queries)

search engines that would handle the same document
collection but that use different indexing or search
schemes.  Once we have obtained result lists from these
various search engines, we would need to merge them
in an effective manner (data fusion).  Thus, even though
certain degrees of retrieval effectiveness may be
attributed to each search approach, combining the result
lists might provides better average precision.  If we
were to use RSVk to denote the retrieval status value (or
document score) for a given document retrieved by the
kth search engine, Fox & Shaw (1994) suggested using
various operators (see Table 1) and showed that the best
performance could be achieved using "combSUM".  

 combMAX MAX (RSVk)
 combMIN MIN (RSVk)
 combSUM SUM (RSVk)
 combANZ SUM (RSVk) / # of nonzero (RSVk)
 combNBZ SUM (RSVk) * (# of nonzero (RSVk))
 combRSV% SUM (RSVk / maxRSV)
 combRSVn SUM[(RSVk-minRSV)/(maxRSV-minRSV)]

Table 1.  Data fusion strategies

Of course we might also employ the round-robin
merging strategy, taking the first retrieved item from
the first result list, then the first retrieved document
from the second list, etc., and finally the first item
from the last result list and then back again to the first
result list.  Duplicates encountered in this process are
simply ignored.   

1.4. Evaluation

To evaluate various IR models using the genomic
collection, we used 50 queries and various statistics on

relevance assessments. As shown in Table 2, the
number of pertinent items per request is relatively small
(mean = 11.32).  The mean average precision for nine
vector-space schemes together with the Okapi and
Prosit probabilistic models are depicted in Table 3.
This table shows the results of evaluating two
stemmers and two word delimiting strategies.  

Number of queries 50
Number of relevant doc. 566
Mean rel. doc. / request 11.32
Standard deviation 13.15
Median 7
Maximum 66  (Query #32)
Minimum 2  (e.g., Query #4)

Table 2.  Relevance judgment statistics (Genomics)

An examination of Table 3 shows that the best
retrieval effectiveness was obtained when using the
vector-space model "dtu-dtn," while second best results
were usually obtained using the "atn-ntc" scheme.
Ranking third was the "Lnu-ltc" model (using the S
stemmer), or the "ltn-ntc" model (using Lovins’
stemmer).  In these experiments, the simple "tf-idf"
approach (denoted "ntc-ntc") did not appear to perform
very well.  To our surprise, we noted that the Okapi or
Prosit probabilistic model did not perform very well in
this task, contrarily to our previous experiments (for
example those based on the Amaryllis corpus, also
composed of bibliographic records (Savoy, 2003)).

From Table 3 we might also infer that the extended
word delimiter (labeled "Separator+") usually enhanced
performance only slightly.  Moreover, the light S
stemmer resulted in better retrieval effectiveness than
did Lovins’ algorithm.    



Mean average precision
Lovins’ stemmer S stemmer

Default list Separator+ Default list Separator+
IR model Prosit dtu-dtn Prosit dtu-dtn Prosit dtu-dtn Prosit dtu-dtn
#doc/#term 15.07 16.80 14.60 17.44 15.31 18.25 14.91 18.67
3 / 10 15.60 16.77 15.55 17.53 16.25 18.57 16.43 16.27
3 / 15 15.62 16.45 15.63 17.50 16.26 18.40 16.44 15.88
3 / 20 15.58 16.59 15.80 17.42 15.93 18.47 16.55 16.03
3 / 30 16.10 16.51 15.41 17.46 16.41 18.36 16.92 15.97
5 / 10 16.14 16.75 16.42 17.55 16.79 18.57 16.78 16.27
5 / 15 16.43 16.78 15.65 17.60 16.56 18.61 16.46 16.47
5 / 20 16.30 16.74 15.69 17.62 16.03 18.57 16.87 16.14
5 / 30 15.50 16.76 15.31 17.61 15.87 18.58 16.29 16.05
10 / 10 17.17 16.74 17.20 17.67 17.90 18.50 17.37 15.93
10 / 15 16.53 16.75 16.93 17.67 16.97 18.57 17.53 16.05
10 / 20 15.96 16.76 17.38 17.67 16.79 18.62 17.29 16.20
10 / 30 15.97 16.79 16.37 17.68 16.10 18.42 16.81 16.35

Table 4.  Mean average precision for various relevance feedback parameter settings (Genomics corpus, 50 queries)

Mean average precision
Lovins’ stemmer S stemmer

Default list Separator+ Default list Separator+
IR model + Q expand + Q expand + Q expand + Q expand
Prosit 15.07 17.17 14.60 17.38 15.31 17.90 14.91 17.53
dtu-dtn 16.80 16.79 17.44 17.68 18.25 18.62 18.67 16.35
combMAX 15.07 17.17 14.60 17.38 15.31 17.90 14.91 17.53
combMIN 2.48 1.46 5.02 1.26 3.06 1.34 5.16 2.05
combSUM 15.51 17.08 15.47 17.43 15.72 16.89 16.11 17.52
combANZ 12.16 14.00 12.33 13.39 13.79 15.76 14.15 15.27
combNBZ 15.51 17.07 15.48 17.42 15.72 17.90 16.11 17.39
combRSV% 17.43 17.52 16.52 17.63 18.38 18.72 17.82 16.97
combRSVn 17.54 17.51 16.78 17.72 18.48 18.74 17.83 17.07
round-robin 15.66 17.53 16.05 18.21 16.67 18.59 16.97 17.59

Table 5.  Mean average precision of various data fusion approaches (Genomics corpus, 50 queries)

From the data depicted in Table 4, we can conclude
that pseudo-relevance feedback usually increases mean
average precision.  When taking the r=10 best ranked
documents into account, performance is usually
enhanced compared to r=3 or r=5.  This improvement
is however rather small, particularly for the "dtu-dtn"
vector-space model.  On the other hand from previous
experiments with the Prosit model, there is evidence
that blind query expansion usually improves mean
average precision significantly (Savoy, 2003). Our
current test-collection seems to confirm this.  Finally,
we evaluated various data fusion strategies that might
be employed to improve retrieval effectiveness.  In our
case we submitted the same request to two search
engines (Prosit and "dtu-dtn") with and without blind
query expansion (using the best parameter setting).
Based on the data shown in Table 5, it appears that data
fusion based on combRSVn or a simple round-robin

scheme performs better.  Moreover, various data fusion
strategies (combMIN, combMAX, combANZ, and
combNBZ) degraded the system’s overall performance.

 Prosit 17.90 (S) 17.38 (Lov+) 17.38 (Lov+)
 dtu-dtn 18.67 (S+) 18.62 (S) 18.67 (S+)

 combMAX 18.49 17.38 16.98
 combMIN 15.97 1.21 15.00
 combSUM 19.17 17.51 18.69
 combANZ 18.73 13.01 18.38
 combNBZ 19.09 17.49 18.63
 combRSV% 19.45 18.81 19.18
 combRSVn 19.44 18.91 19.15
 round-robin 19.09 18.81 17.16

Table 6.  Evaluation of various data fusion strategies

Table 6 shows the results of combining the Prosit
and "dtu-dtn" search models, using both stemmers
(denoted "Lov" or "S") and separator characters lists



(our separator list "Separator+" is denoted "+").  From
this data, we can conclude that it seemed better to
combine retrieval schemes based on a variety of
indexing strategies (e.g., using the different separator
lists shown in the second column, or different
stemming algorithms as depicted in the third and forth
columns). Finally, Table 7 lists the specifications for
our official runs.

Run name MAP Description

 UniNEg1 18.52 Okapi+dtu-dtn, def., combRSVn
 UniNEg2 18.02 Okapi+dtu-dtn, def., combRSV%
 UniNEg4 16.23 dtu-dtn, Lovins, default list
 UniNEg5 16.35 Lnu-ltc, S-stem, separator+

Table 7. Description of our official runs
(all with blind query expansion)

2. Genomic Information Extraction
The main purpose of the genomic secondary task

was to address the bioinformatic community’s
information extraction needs.  More precisely, the goal
was to reproduce the GeneRIF (Gene Reference into
Function used in the LocusLink1 database), either from
a Medline record or from the entire article. GeneRIF
snippets sometimes contain direct quotations from
article abstracts but they might also include or
paraphrase certain texts extracted from article titles or
abstracts.

The data used for this task consisted of 139
GeneRIFs, representing all articles appearing in five
journals (Journal of Biological Chemistry, Journal of
Cell Biology, Science, Nucleic Acids Research and
Proceedings of the National Academy of Sciences),
during the latter half of 2002.

2.1. Models

From the beginning, we decided to use only the
article titles and abstracts for this task.  As the title was
supposed to be a good candidate for the GeneRIF
annotation, we tried selecting it systematically and
using it as a baseline performance measure for our task.

Then for each GeneRIF we tried selecting each
GeneRIF term also contained in the corresponding
abstract.  This method provided us with a theoretical
maximum that could be reached, using only articles
titles and abstracts.

2.1.1. Dummy (UniNEie5)

First of all, we established the term frequencies for
the words contained in the GeneRIFs.  Then, we ranked

                                                
1  Available at www.ncbi.nlm.nih.gov/LocusLink/

them and selected in descending order, those terms
having frequencies greater or equal to 9. The words
selected by using this simple strategy were:

cell role protein expression gene receptor activation
regulate human apoptosis alpha sp1 signaling domain
regulation kinase suggest pathway

We then supplied this fixed sequence of words as
the GeneRIF for each query.

2.1.2. Random (UniNEie4)

For each query, we segmented the corresponding
abstract into sentences.  Then we considered all
sentences, including the title.  Each sentence having 10
to 14 words was repeated once into our set of
candidates.  Each sentence within this set thus had an
equal probability of being selected.  Finally we
randomly chose a sentence that was returned as the
GeneRIF.

2.1.3. Logarithm of Term Frequency (UniNEie3)

As the GeneRIFs were provided, we computed the
term frequencies for all words contained therein.  Then,
for each query, we segmented the corresponding abstract
into sentences.  For each sentence, including the title,
we removed the stopwords and then stemmed the
remaining words, using the SMART stopword list (571
entries) and the S stemmer (see Section 1.1).  We then
computed a sentence score as follows:

† 

score  =  
ln(tfj)

j=1

len
Â

len
where j is the term index, tfj the term frequency in
GeneRIFs and len the length of the sentence without
stopwords.  Finally, we returned the sentence having
the highest score as the GeneRIF.

2.1.4. Term Frequency and Logistic Regression

We again used the above process except that the
score was computed as follows:

† 

score  =  
w(tfj)

j=1

len
Â

len
where j is the term index, tfj the term frequency in
GeneRIFs, and len is the length of the sentence without
stopwords. Table 8 lists the resultant w(tfj) values.

We then selected the sentence having the highest
score as a GeneRIF candidate and applied a logistic
regression model (Hosmer & Lemeshow, 2000), using
the statistical Fisher method to predict when the system
should return the chosen sentence or the title.  We tried



two variants, corresponding to different sets of
variables.

tfj w(tfj)

9  <  tfj 4
4  < tfj  ≤ 9 3
2  < tfij ≤ 4 2
1  < tfij ≤ 2 1

tfij ≤  1 0

Table 8.  Terms weights

Model A (UniNEie2)

The following example provides an explanation of
how our model works.  Looking at Query #30, we
must chose between the title and the candidate shown
in Table 9.  Table 10 lists the sentence results after
removing stopwords and applying the stemming
procedure.  

  Title
Comparative surface accessibility of a
pore-lining threonine residue (T6') in
the glycine and GABA(A) receptors.

  Candidate This action was not induced by
oxidizing agents in either receptor.

Table 9.  Competing sentences for Query #30

Title
Comparative surface accessibility
pore-lining threonine residue (T6')
glycine GABA(A) receptor

  Candidate action induced oxidizing agent either
receptor

Table 10.  Competing sentences
(stemmed, without stopwords)

Variable Meaning Candidate Title Diff
Len length 6 10 -4
Abrv #acronyms 0 1 -1

Terms #terms 5 10 -5
Max2Idf 2nd max idf 3.44 9.01 -5.58
MinIdf min idf 2.25 2.35 -0.11

Min2Idf 2nd min idf 2.65 2.65 0.0

Table 11.  Variables used for the regression

For each candidate, we could compute certain statis-
tics, such as its length ("Len"), the number of acronyms
("Abrv"), the number of indexing terms ("Terms"), etc.
as shown in Table 11.  Since however we knew the title
can usually be viewed as a suitable GeneRIF, we also
computed certain statistics concerning the difference
between a given candidate and the article title, as shown
in Table 12.  These values were then used as predictors
in our logistic regression model to compute the pro-
bability that the corresponding candidate would be a
suitable GeneRIF.  The last column in Table 12 lists

the estimated value of these corresponding statistics.
For example, the estimate for the variable "d.Len" is
negative, indicating that when the candidate length is
greater than the title length, this fact decreases the
probability that this candidate would be a suitable
GeneRIF.  

Variable Meaning Estimate

Intercept -3.9502

d.Len length
candidate – title

-3.3939

d.Abrv # acronyms
candidate - title

2.5182

d.Terms # terms
candidate - title

2.5645

d.Max2Idf 2nd max idf
candidate - title

1.1829

d.MinIdf min idf
candidate - title

6.1737

d.Min2Idf 2nd min idf
candidate - title

-5.1732

Table 12.  First set of variables and estimates

Using the result of the logistic regression, we
returned the complete title 126 times and the candidate
13 times, 7 of them forming a part of the title.

Model B (UniNEie1)

As a variant of the previous model, we changed the
set of explanatory variables, as depicted in Table 13.  

Using the logistic regression results, we returned the
complete title 129 times and our candidate 10 times, 6
of them forming a part of the title.

2.2. Evaluation

The Dice coefficient, measuring the degree of
overlap of two sentences was used for evaluation
purposes.  Given two sentences A and B, we defined
|A| as the number of words in A, |B| as the number of
words in B, and |A«B| as the number of words
occurring in both A and B.  The Dice coefficient was
measured by:

† 

Dice (A, B) =  
2 *  A « B( )

A  +  B( )   

Four variants of this measure were used for
evaluation (more details can be found at the Web site1)
- Dice 1 is the classical Dice
- Dice 2 is the modified unigram Dice
- Dice 3 is the bigram Dice
- Dice 4 is the bigram Phrases

                                                
1  See medir.ohsu.edu/~genomics/protocol.html



Variable Meaning Estimate

Intercept 68.199

Terms # indexing terms in
the candidate

-19.867

Min2Idf 2nd max idf
candidate

-36.733

nb.Art # common terms in
candidate and abstract

18.999

d.Len length
candidate –title

-57.029

d.Abrv # acronyms
candidate - title

17.141

d.Terms # indexing terms
candidate - title

46.910

d.Max2Idf 2nd max idf
candidate - title

30.926

d.MinIdf min idf
candidate - title

22.121

Table 13. Second set of variables and estimates

Table 14 shows an evaluation of our runs.  The
second row forms our baseline, representing the article
title, a scheme within which the title is always
returned.  On the other hand, the third row ("Generifs «
abst.") represents the maximum value that could be
achieved when selecting the most appropriate sentence,
using only the article title and abstract.

Dice 1 Dice 2 Dice 3 Dice 4

Title (min) 50.47% 52.60% 34.82% 37.91%
Generifs «
abst. (max)

59.53% 83.26% 61.66% 52.76%

UniNEie5 9.42% 14.20% 0.15% 0.17%
UniNEie4 25.88% 25.29% 12.03% 13.61%
UniNEie3 49.46% 51.42% 33.62% 36.99%
UniNEie2 51.72% 54.27% 36.62% 39.71%
UniNEie1 52.28% 54.78% 37.43% 40.35%

Table 14.  Evaluation of our official runs

Using this data, we hoped to improve our extraction
of the suitable GeneRIFs from the title scheme, through
using one of our logistic regression models.  In this
case, it seemed that Model B (or UniNEie1) performed
slightly better, even though both models returned the
title many times. We attempted to improve our
system’s performance through incorporating additional
data, such as full text articles or gene names, together
with the selection of the explanatory variable set for the
logistic regression.

3. Our Okapi Search Model
Based on our previous work (Savoy & Picard,

2001; (Savoy & Rasolofo, 2003), the Okapi search
model provided significantly greater retrieval

effectiveness.  However, in order to manage the Web
collection (1,247,753 documents that were extracted
from the .GOV domain, or about 18.1 GB of data), we
needed to modify this search model for two reasons.
Firstly, we wanted to incorporate three document
representatives for each Web page, and secondly we
needed to distribute the inverted file in order to respect
the 2 GB limit.

When processing three document representations, we
estimated the degree of similarity between document Di

and the current query would be a linear combination of
the inner product of the three document representations,
to be given as:

† 

RSV(Di)  =  a ⋅ wij
(1) ⋅ qwj

j=1

m
Â

            +  b  ⋅  wij
(2) ⋅ qwj

j=1

m
Â  +  g  ⋅  wij

(3) ⋅ qwj
j=1

m
Â

(1)

where w(1)
i j indicates the weight attached to the term tj

in the document Di in the first document representation
(w(2)

i j and w(3)
i j for the second, respectively, the third

document surrogate), and the parameters a, b, g  are
used to assign a comparative importance to each
document representative.  

Creating a single inverted file from a collection of
approximately 18 GB might be impossible using a 32-
bit system (e.g., Linux).  To overcome this limit, we
will follow the approach described in Rasolofo &
Savoy (2003), whereby each sub-collection would be
indexed using the tf component.  When merging the
result lists obtained from searching into these different
sub-collections, we computed the idf component and
applied the normalization.  Following this step, we
could then merge the result lists according to the new
document scores.  

Knowing that both Web tasks required high
precision searches, we decided to enhance our Okapi
model by implementing the term proximity scoring
function (see Rasolofo & Savoy (2003) for more
details).  The main premise was that if all search
keywords appear in a document representative, our
search model would increase the corresponding
document score.  On the other hand, if only a part of
these search terms appeared in a given Web page, the
final retrieval status value would remain unchanged (see
Eq. 1).  While the term proximity function would have
a greater value if the search keywords appear close to
each other, they may occur more than once within a
given sentence or tag. In our system the constant d
denoted the impact of these proximity scores.  Of
course, setting d = 0 means that the proximity score is
not computed.  



4. Named and Home Pages Finding
The following considerations formed the basis of

our first Web task.  When submitting a request to a
search engine, users will sometimes not want a ranked
list of Web pages concerning a particular topic, but
rather they would prefer the location of an underlying
service or known-item (usually presented within a short
list of the most probable locations).  For example, the
appropriate response to a query on "state department",
"Secret Service jobs", "Navajo Nation", or "barbara
mikulski bio" (and even with a spelling error such as
"US Volcano Oservatories") would not be a ranked list
of documents covering these subjects but rather those
site(s) that contain the required form/information/list.
To accomplish this we needed to implement an IR
system that could retrieve a limited number of pages
(one at the very least) in response to the user's request.

4.1. Search Models

As a basis for our search model we used the Okapi
model as described in Section 3.  Our first document
representative was based on information found in the
Web page, including the corresponding <TITLE> and
<META> tags ("keywords" and "description"). Of
course Web pages might also contain links and their
associated anchor texts (or anchor texts for outgoing
links).  Our second document surrogate was based on
the <TITLE> tag and the anchor texts for those Web
pages pointing to the current document.  The third
document representative was built by concatenating the
<TITLE>, <H1>, and <BIG> tags from pages pointing
to the current Web page.  This third aspect was used to
reinforce the importance of those Web pages pointing to
the current page.  Since we know that end tags (e.g.,
</H1> or </BIG>) are sometimes missing, we only
considered the first 64 words following any given tag.  

This indexing strategy was based on previous
studies (Craswell et al., 2001), (Westerveld et al.,
2002), (Kraaij et al., 2002), showing that anchor texts
from other Web pages pointing to the current page may
provide compact and often accurate descriptions of the
current page's content.  For this reason, we extracted
link anchor texts from all Web pages pointing to the
current page and concatenated them to form our second
document representative. Finally, we also considered
URL content (or more precisely, the similarity between
the URL text and the current request, or URL lengths).
In our current search models, these additional sources of
information had not taken into account.

When high precision results are required for
indexing documents or requests, it is usually not a
good idea to include a stemming procedure.  We could

however adopt a light stemming such as the "S-
stemmer" (see Section 1.1 (Harman, 1991)).  In this
case, the words "house" and "houses" would be reduced
to the same root while the term "housing" would be
treated as a different indexing unit.  Based on our
experiments from last year (Savoy & Rasolofo, 2003),
we decided to ignore the stemming approach for this
task due to the fact that even light stemming was
usually found to diminish the system’s overall
performance (Savoy & Rasolofo, 2003).

4.2. Evaluation

In this IR search model, based on three document
representatives and a proximity scoring function, we
first needed to determine the relative importance
assigned to each document representative (based on
internal Web page content for the first surrogate), as
compared to the weight attached to the second and third
document representatives (based mainly on link anchor
texts from those Web pages pointing to the current
one).  The relative importance for each surrogate was
controlled through using the parameters a, b, g  (see
Section 3) while the proximity score was weighted
using the constant d.

Number of queries 300
Number of relevant doc. 352
Mean rel. doc. / request 1.173
Standard deviation 0.609
Median 1
Maximum 6  (Query #244)
Minimum 1

Table 15.  Relevance judgment statistics (named
and home page searches, TREC-2003)

Our evaluation was based mainly on the mean reci-
procal rank (MRR) of the first correct answer found by
the system. Table 15 depicts statistics on the relevance
assessments of this test-collection, clearly showing that
we usually obtain one correct answer per topic.  For
each of the 300 queries, we considered only the first
100 retrieved items.  As seen in Table 16, the best
value for our parameters seems to be around a=0.6,
b=0.4, g=0.05, and d=0.1, thus assigning a little more
weight to internal representation (parameter a) than to
the anchor texts of all Web pages pointing to the
current document (parameter b ).  The third
representation does not seem to have a great impact on
system’s performance.  The underlined parameters in
this table represent the settings used for our official
runs.  

Finally, Table 17 provides a summary description
of our four official runs.  Usually, we did not attach
much importance (g = 0 or very small) to the third



document representative (<TITLE>, <H1>, and <BIG>
texts from pages pointing to the current Web page).
The difference between UniNEnp1 and UniNEnp3
represented the inclusion of the term proximity scoring
function within UniNEnp3, seemingly a useful
technique for improving retrieval effectiveness.  Taking
account for this third surrogate enhanced the system’s
performance (see Table 16).  The performance
differences between UniNEnp2, UniNEnp5 were due to
the various parameter settings used for the Okapi
model.  

Parameters MRR # in top 10

Okapi b=0.5
a=0.6, b=0.4, g=0, d=0 0.666 252  (84.0%)
a=0.6, b=0.4, g=0, d=0.1 0.691 251  (83.7%)
a=0.6, b=0.4, g=0, d=0.2 0.692 251  (83.7%)
a=0.6, b=0.4, g=0.05, d=0 0.707 258  (86.0%)
a=0.6, b=0.4, g=0.05, d=0.1 0.720 259  (86.3%)
a=0.7, b=0.3, g=0.05, d=0.1 0.700 258  (86.0%)
a        =0.8,             b       =0.2,              g        =0.05,             d       =0.1   0.676 252  (84.0%)
a=0.8, b=0.2, g=0.05, d=0.2 0.682 254  (84.7%)

Okapi b=0.6
a=0.6, b=0.4, g=0, d=0 0.667 250  (83.3%)
a=0.6, b=0.4, g=0, d=0.1 0.690 250  (83.3%)
a=0.6, b=0.4, g=0, d=0.2 0.689 250  (83.3%)
a=0.6, b=0.4, g=0.05, d=0 0.700 258  (86.0%)
a=0.6, b=0.4, g=0.05, d=0.1 0.713 259  (86.3%)
a        =0.7,             b       =0.3,              g        =0,             d       =0   0.626 247  (82.3%)
a        =0.7,             b       =0.3,              g        =0,             d       =0.1   0.658 251  (83.7%)
a=0.7, b=0.3, g=0.05, d=0.1 0.699 257  (85.7%)
a        =0.8,             b       =0.2,              g        =0.05,             d       =0.1   0.686 254  (84.7%)

Okapi b=0.7
a=0.6, b=0.4, g=0, d=0 0.654 246  (82.0%)
a=0.6, b=0.4, g=0, d=0.1 0.677 247  (82.3%)
a=0.6, b=0.4, g=0, d=0.2 0.676 248  (82.7%)
a=0.6, b=0.4, g=0.05, d=0 0.691 256  (85.3%)
a=0.6, b=0.4, g=0.05, d=0.1 0.701 256  (85.3%)
a=0.6, b=0.4, g=0.05, d=0.2 0.706 257  (85.7%)
a        =0.7,             b       =0.3,              g        =0.05,             d       =0.1   0.688 254  (84.7%)
a=0.8, b=0.2, g=0.05, d=0.1 0.683 253  (84.3%)

Table 16. IR model evaluation for various
combinations of our three document representatives

5.  Topic Distillation
The basic purpose of the topic distillation task was

to return a list of key resources on a given topic (e.g.,
"pest control safety", "computer viruses" or "children’s
literature").  Explicitly defining what does or does not
constitute a suitable resource was however difficult, and
each definition seemed to become more and more am-
biguous.  While Web pages with appropriate content
might be considered as useful key resources and we

could have retrieved them using a classic IR model, key
resources may also be good hubs (or Web pages poin-
ting to various pages containing pertinent content with
respect to the submitted request).  Moreover, if a Web
page is linked to two, three or more children having a
high degree of similarity with the request, it seems
more appropriate to return this parent page rather than
the two, three of more children.  More generally
however returning many pages extracted from the same
Web site would not be viewed as a wise strategy.  Thus
to suggest a proper solution for this specific task, we
decided to employ various strategies that would point
to reliable browsing starting points rather than simply
retrieving Web pages with suitable content.

Run name MRR Parameter settings
Okapi b=0.6

UniNEnp1 0.626 a=0.7, b=0.3, g=0.0, d=0.0

Okapi b=0.5
UniNEnp2 0.676 a=0.8, b=0.2, g=0.05, d=0.1

Okapi b=0.6
UniNEnp3 0.658 a=0.7, b=0.3, g=0.0, d=0.1

Okapi b=0.7
UniNEnp4 0.688 a=0.7, b=0.3, g=0.05, d=0.1

Okapi b=0.6
UniNEnp5 0.686 a=0.8, b=0.2, g=0.05, d=0.1

Table 17.  Description of official named-page
 & homepage runs

5.1. Search Models

As for the named page and homepage search task,
we built three document representatives for each Web
page contained in the .GOV collection.  The first repre-
sentative accounted for Web page content along with its
<TITLE> and <META> tags ("keywords" and "descrip-
tion") and the anchor texts contained in the page. The
second document surrogate was built from the text
delimited by the <TITLE> tag together with link anchor
texts from all outgoing and all incoming links.  The
third document representative was composed of all
<TITLE> and <H1> tags provided by all pointed pages
(or pages accessible within a one-click distance from the
current page).  

Once the pages were retrieved, we followed
hyperlinks coming into them in order to define proper
starting points for browsing (in this case we followed
existing hyperlinks in the reverse direction).  To
retrieve these starting points we used our spreading
activation (SA) search scheme (Crestani & Lee, 2000),
(Savoy & Picard, 2001).  Using this method, document
scores initially computed by the IR system (denoted
RSV(Di)) were propagated to the linked documents



through a certain number of cycles, based on a
propagation factor.  We used a simplified version with
only one cycle and a fixed propagation factor l for all
links.  As a result, the final retrieval status value for a
document Di linked to k documents was computed
using the following equation:

RSV'(Di) = RSV(Di) + l · 
  

RSV(Dj)
j=1

k
Â (3)

When in our experiments we tried to extract the
proper starting sites for browsing, we only considered
all incoming links for each of the k best-ranked docu-
ments.  

As other possibilities, we might consider the Page-
Rank algorithm (Brin & Page, 1998), the HITS algo-
rithm (Kleinberg, 1998) or probabilistic argumentation
systems (Picard, 1998).  During the evaluation
campaign of last year however, we did obtain poor per-
formance when employing the HITS algorithm (Savoy
& Rasolofo, 2003).  

5.2. Evaluation

In order to evaluate the performance of a topic distil-
lation IR scheme, we could use the precision achieved
after retrieving 5 or 10 documents (under the labels
"Prec@5" or "Prec@10") together with the number of
relevant items retrieved (out of a total of 516 for the 50
queries included in the .GOV collection).  Each request
would be composed of a short title and a descriptive
part.  

Number of queries 50
Number of relevant doc. 516
Mean rel. doc. / request 10.32
Standard deviation 13.38
Median 8
Maximum 86  (Query: #32)
Minimum 1  (Query: #13)
Number of distinct roots / query
Mean 8.38
Standard deviation 11.641
Median 6
Maximum 77  (Query: #32)
Minimum 1  (Query: #13)

URL length 1 79
   length 2 93
   length 3 171
   length 4 108
   length 5 44
   length 6 13
   length 7 and more 8

Table 18.  Relevance judgment statistics (topic
distillation searching task, TREC-2003)

Table 18 shows various statistics based on relevance
assessments.  The mean number of relevant items (or
key resources) per request is 10.32.  From considering
the number of distinct roots (e.g., the first part of an
URL, e.g., "trec.nist.gov"), we found that in mean,
there were 8.38 different roots per query (for Query# 13,
the unique relevant item is coming from the Web site
"nimh.nih.gov").  On the other hand, for Query# 48,
we found 9 relevant pages (over a total of 10) extracted
from the root page "prime.jsc.nasa.gov".  

In our first set of experiments, we evaluated our
extended Okapi IR model (see Section 3).  By varying
the value attached to the parameters a , b , g , we
assigned more or less weight to each document repre-
sentation.  For example, when we set a  to 0, and
b to 0, we accounted for text delimited by the <TITLE>
and <H1> tags provided by all pointed pages.  In other
words, we viewed the page as a good starting point for
browsing (limited however to a one-click distance).  On
the other hand, with a  = 1, b  = 0, and g  = 0, our
search model was based only on Web page content.  

Run name Prec@5 Prec@10

a        =1,       b       =0,        g        =0,       d       =0   8.00 6.20
a        =1,       b       =0,        g        =0.03,       d       =0.1   11.60 7.60
a        =1,       b       =0,        g        =0.03,       d       =0.3   12.40 8.00

a=0, b=0, g=1, d=0 7.20 4.60
a=0, b=0, g=1, d=0.1 8.00 4.60

a=0.5, b=0.5, g=0, d=0 16.40 10.80
a=0.5, b=0.5, g=0, d=0.1 16.00 11.00
a=0.5, b=0.5, g=0.03, d=0 16.40 10.80
a=0.5, b=0.5, g=0.03,d=0.1 16.00 11.00
a=0.5, b=0.5, g=0.1, d=0 15.60 11.40
a=0.5, b=0.5, g=0.1, d=0.1 16.00 11.60

a=0.7, b=0.3, g=0, d=0 15.20 10.20
a=0.7, b=0.3, g=0, d=0.1 16.00 10.20
a=0.7, b=0.3, g=0.1, d=0 14.00 11.40
a=0.7, b=0.3, g=0.1, d=0.1 14.00 11.40

a=0.8, b=0.2, g=0, d=0 14.40 9.80
a=0.8, b=0.2, g=0, d=0.1 14.80 9.40
a=0.8, b=0.2, g=0, d=0.3 15.20 9.00
a=0.8, b=0.2, g=0.03,d=0.3 15.20 9.00
a=0.8, b=0.2, g=0.1, d=0.3 14.00 10.60

Table 19. Evaluation of various document
surrogates combinations

Table 19 displays the various results produced by
our IR model (without stemming) when varying the
relative importance of each document representative.
From this data, the best parameter values seemed to be:
a = 0.5, b = 0.5, and g = 0.  The third document rep-
resentative does not seem to improve retrieval effective-
ness.  As such, our second representation (<TITLE> tags
& anchor link texts from all pointed and pointing



pages) seemed to be more valuable for this specific IR
task.  Usually, the term proximity scoring function
seems to improve the ranking of pertinent items (e.g.,
precision after 5).  The underlined parameters in this
table represent the settings used for our official runs.

Table 20 provides a summary description of our five
official runs, all of which were created without a stem-
ming procedure.  For both UniNEdi2 and UniNEdi5,
we only accounted for a single document representative
(content-oriented only, based on the good performance
of such indexing schemes last year).  For UniNEdi3
and UniNEdi4, we accounted for two document
surrogates.  Our best run was UniNEdi1, which
accounted for three document representatives.  For
UniNEdi4, after retrieving content-based Web pages
using our extended Okapi model, we applied a sprea-
ding activation with l = 0.02, for the first k = 50 top-
ranked items.

Run name Prec@10 description

UniNEtd1 9.80 a=0.8, b=0.2, g=0.03, d=0
UniNEtd2 7.60 a=1, b=0, g=0, d=0
UniNEtd3 7.60 a=1, b=0, g=0.03, d=0.1

UniNEtd4 8.80 a=1, b=0, g=0.03, d=0.3
     & SA, k=50, l=0.02

UniNEtd5 9.60 a=1, b=0, g=0, d=0
     & data fusion

Table 20. Description of our official topic distillation
runs

  Parameters Prec@5 Prec@10

a=0.5, b=0.5, g=0.1, d=0.1 16.00 11.60

 l = 0.02, k = 50 17.60 12.00
 l = 0.05, k = 50 17.60 12.20
 l = 0.1, k = 50 13.60 12.00

 l = 0.05, k = 100 18.80 12.80
 l = 0.05, k = 200 19.20 12.40
 l = 0.05, k = 300 16.40 14.00
 l = 0.05, k = 400 16.00 13.80

a=1, b=0, g=0, d=0 8.00 6.20

 l = 0.02, k = 50 10.00 7.20
 l = 0.05, k = 50 10.40 7.80
 l = 0.1, k = 50 10.00 7.60

 l = 0.05, k = 100 12.80 8.60
 l = 0.05, k = 200 12.80 9.20
 l = 0.05, k = 300 12.80 9.80
 l = 0.05, k = 400 13.20 10.20

Table 21.  Evaluation of various parameter settings
for the spreading activation approach

When evaluating our spreading activation (SA)
method, we only take account for hyperlinks in reverse

orientation.  In this case, a l fraction of the score
attached to the children is propagated to the parent page
(see Eq. 3).  From data depicted in Table 21, it seems
that the propagation factor l must be around 0.02, and
the SA must be limited to the first k = 300 or first
k = 400 best-ranked items.

When using the best-run shown in Table 19, we
tried various parameter settings as depicted in top part
of Table 21.  In this case, we may enhance the precision
after 10 documents from 11.8% to 14.0% (leading to
+20% improvement).  On the other hand, when the
starting point is based only on the Web page content
(as depicted in the bottom part of Table 21, with a= 1,
b  = 0, g = 0, d  = 0), our SA may also improve the
precision at 10 retrieved item from 6.2% to 10.2%
(+64% improvement).
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Appendix 1.  Weighting schemes
To assign an indexing weight wij reflecting the

importance of each single-term tj in a document Di, the
formula shown in Table A.1 may be used, where
document length (the number of indexing terms) for
document Di is denoted by nti, and n indicates the
number of documents in the collection.  For the Okapi
weighting scheme, K represents the ratio between the
length of document Di measured by li (sum of tfi j) and
the collection's mean is noted by avdl or more precisely

  
K  =  k1  ⋅  1- b( )  +  b ⋅

li
avdl

È 

Î 
Í 

˘ 

˚ 
˙ 

For the Genomic corpus, the constant avdl was
fixed at 300, b at 0.55, k1 at 1.2, C at 3, mean dl at 73,
pivot at 50 and slope at 0.05.  For both Web searching
tasks, we set avdl at 900, b at 0.75, k1 at 1.2, pivot at
125 and the constant slope at 0.1.

bnn wij  =  1 nnn wij  =  tfi j

ltn wij  =  (ln(tfi j) + 1) . idfj atn wij =  idfj 
.[0.5 + 0.5.tfi j /max tfi .]

lnc wij  =  
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ln(tf ik) + 1( )( )2

k =1

t
Â

npn wij  =  

  

tf i j ⋅ ln
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df j
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Okapi wij = 

  

(k1 + 1) ⋅ tf i j( )
K + tf i j( ) dtn wij = 

† 

1 + ln 1+ ln(tfij)( )( ) ⋅ idfj

ntc wij  =  

  

tf i j ⋅ idf j

tf ik ⋅idfk( )2

k =1

t
Â

dtu wij  =  
  

1 + ln 1+ ln(tf i j)( )( ) ⋅idf j

(1- slope) ⋅ pivot + slope ⋅ nt i

ltc wij  =  
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ln(tfij) +1( ) ⋅ idfj
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(1- slope) ⋅ pivot + slope ⋅ nt i

Table A.1:  Weighting schemes


